EconPapers    
Economics at your fingertips  
 

Parametric Bootstrap Estimation of Standard Errors in Survival Models When Covariates are Missing

Francesco Ungolo (), Torsten Kleinow () and Angus S. Macdonald ()
Additional contact information
Francesco Ungolo: Technische Universität München
Torsten Kleinow: Heriot-Watt University and Maxwell Institute of Mathematical Sciences
Angus S. Macdonald: Heriot-Watt University and Maxwell Institute of Mathematical Sciences

A chapter in Mathematical and Statistical Methods for Actuarial Sciences and Finance, 2021, pp 389-394 from Springer

Abstract: Abstract We propose and analyze parametric bootstrapping for estimating the standard error of the parameter estimates of regression models for the mortality hazard function, in a survival model when covariates on individual lives are missing at random. Using an example based on UK pension scheme members, we describe the methodology and its impact on the mis-estimation risk capital requirement.

Keywords: Survival Models; Parametric Bootstrap; Missing Covariates (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-78965-7_57

Ordering information: This item can be ordered from
http://www.springer.com/9783030789657

DOI: 10.1007/978-3-030-78965-7_57

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:spr:sprchp:978-3-030-78965-7_57