MCTDH-X: The Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Particles High-Performance Computation Project
A. U. J. Lode (),
O. E. Alon (),
M. A. Bastarrachea-Magnani,
A. Bhowmik,
A. Buchleitner,
L. S. Cederbaum (),
R. Chitra,
E. Fasshauer,
L. de Forges de Parny,
S. K. Haldar,
C. Lévêque,
R. Lin,
L. B. Madsen,
P. Molignini,
L. Papariello,
F. Schäfer,
A. I. Streltsov,
M. C. Tsatsos and
S. E. Weiner
Additional contact information
A. U. J. Lode: Albert-Ludwigs-Universität Freiburg, Physikalisches Institut
O. E. Alon: University of Haifa, Department of Mathematics
M. A. Bastarrachea-Magnani: Albert-Ludwigs-Universität Freiburg, Physikalisches Institut
A. Bhowmik: University of Haifa, Department of Mathematics
A. Buchleitner: Albert-Ludwigs-Universität Freiburg, Physikalisches Institut
L. S. Cederbaum: Universität Heidelberg, Theoretische Chemie, Physikalisch-Chemisches Institut
R. Chitra: ETH Zürich, Institute for Theoretical Physics
E. Fasshauer: Department of Physics and Astronomy
L. de Forges de Parny: Albert-Ludwigs-Universität Freiburg, Physikalisches Institut
S. K. Haldar: University of Haifa, Department of Mathematics
C. Lévêque: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien
R. Lin: ETH Zürich, Institute for Theoretical Physics
L. B. Madsen: Aarhus University, Department of Physics and Astronomy
P. Molignini: ETH Zürich, Institute for Theoretical Physics
L. Papariello: ETH Zürich, Institute for Theoretical Physics
F. Schäfer: Albert-Ludwigs-Universität Freiburg, Physikalisches Institut
A. I. Streltsov: Universität Heidelberg, Theoretische Chemie, Physikalisch-Chemisches Institut
M. C. Tsatsos: University of São Paulo, São Carlos Institute of Physics
S. E. Weiner: UC Berkeley, Department of Physics
A chapter in High Performance Computing in Science and Engineering '20, 2021, pp 21-45 from Springer
Abstract:
Abstract This report introduces the multiconfigurational time-dependent Hartree method for indistinguishable particles (MCTDH-X) high performance computation project and its recent research results. We solved the many-particle Schrödinger equation for time-dependent and time-independent systems using the software implementations of theories in the MCTDH-X family on high-performance computation facilities. Going beyond the commonly applied semi-classical and mean-field pictures, we unveil fascinating and fundamental many-body physics in the correlated electron dynamics within the photoionization of neon, ultracold bosons’ hierarchical superfluidity in a cavity, as well as the dynamics of fragmentation, entropy, angular momentum, correlations, and fluctuations of interacting bosons and fermions in one- and two-dimensional double-well potentials. Our present report illustrates how the computational resources at the HLRS for our MCTDH-X applications enabled and boosted our scientific research productivity in the field of many-body physics.
Date: 2021
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-80602-6_2
Ordering information: This item can be ordered from
http://www.springer.com/9783030806026
DOI: 10.1007/978-3-030-80602-6_2
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().