EconPapers    
Economics at your fingertips  
 

Stress Functions for Unsupervised Dimensionality Reduction

Sylvain Lespinats, Benoit Colange and Denys Dutykh
Additional contact information
Sylvain Lespinats: Grenoble Alpes University, National Institute of Solar Energy (INES)
Benoit Colange: Grenoble Alpes University, National Institute of Solar Energy (INES)
Denys Dutykh: Université Grenoble Alpes, Université Savoie Mont Blanc, Campus Scientifique, CNRS - LAMA UMR 5127

Chapter Chapter 5 in Nonlinear Dimensionality Reduction Techniques, 2022, pp 89-118 from Springer

Abstract: Abstract Dimensionality Reduction (DR) represents a set of points {ξ i} in a high dimensional metric data space D $$\mathcal {D}$$ by associated points {x i} in a low-dimensional embedding space ℰ $$\mathcal {E}$$ . This representation defines a mapping Φ : D → ℰ $$\Phi : \mathcal {D} \longrightarrow \mathcal {E}$$ such that Φ(ξ i) = x i for all i. This mapping must preserve as much as possible the structure of data.

Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-81026-9_5

Ordering information: This item can be ordered from
http://www.springer.com/9783030810269

DOI: 10.1007/978-3-030-81026-9_5

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-19
Handle: RePEc:spr:sprchp:978-3-030-81026-9_5