Bernstein-Sato Polynomials in Commutative Algebra
Josep Àlvarez Montaner (),
Jack Jeffries () and
Luis Núñez-Betancourt ()
Additional contact information
Josep Àlvarez Montaner: Universitat Politècnica de Catalunya, Departament de Matemàtiques and Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech)
Jack Jeffries: University of Nebraska-Lincoln
Luis Núñez-Betancourt: Centro de Investigación en Matemáticas
A chapter in Commutative Algebra, 2021, pp 1-76 from Springer
Abstract:
Abstract This is an expository survey on the theory of Bernstein-Sato polynomials with special emphasis in its recent developments and its importance in commutative algebra.
Keywords: Bernstein–Sato polynomial; D-module; Singularities; Multiplier ideals; Primary: 14F10, 13N10, 13A35, 16S32; Secondary: 13D45, 14B05, 14M25, 13A50 (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-89694-2_1
Ordering information: This item can be ordered from
http://www.springer.com/9783030896942
DOI: 10.1007/978-3-030-89694-2_1
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().