EconPapers    
Economics at your fingertips  
 

Continuous Probability Distributions, Confidence Intervals, and Hypothesis Testing

Edward B. Magrab
Additional contact information
Edward B. Magrab: University of Maryland

Chapter Chapter 2 in Engineering Statistics, 2022, pp 29-91 from Springer

Abstract: Abstract In this chapter, we introduce continuous probability density functions: normal, lognormal, chi square, student t, f distribution, and Weibull. These probability density functions are then used to obtain the confidence intervals at a specified confidence level for the mean, differences in means, variance, ratio of variances, and difference in means for paired samples. These results are then extended to hypothesis testing where the p-value is introduced and the type I and type II errors are defined. The use of operating characteristic (OC) curves to determine the magnitude of these errors is illustrated. Also introduced is a procedure to obtain probability plots for the normal distribution as a visual means to confirm the normality assumption for data.

Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-05010-7_2

Ordering information: This item can be ordered from
http://www.springer.com/9783031050107

DOI: 10.1007/978-3-031-05010-7_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-18
Handle: RePEc:spr:sprchp:978-3-031-05010-7_2