EconPapers    
Economics at your fingertips  
 

Combined Derivative Estimators

Paul Glasserman ()
Additional contact information
Paul Glasserman: Columbia Business School

A chapter in Advances in Modeling and Simulation, 2022, pp 193-210 from Springer

Abstract: Abstract We discuss combinations of simulation-based derivative estimators using infinitesimal perturbation analysis (IPA) and the likelihood ratio method (LRM). We first provide a historical perspective on combinations of IPA and LRM and then turn to connections with the generalized likelihood ratio (GLR) method. We re-derive a GLR estimator for barrier options through a combination of IPA and LRM. We then consider the behavior of a GLR estimator for a discrete-time approximation to a diffusion process as the time step shrinks. We show that an average of low-rank GLR estimators has a continuous-time limit, even though each individual estimator blows up. The limit matches an estimator previously derived through Malliavin calculus and also through a combination of IPA and LRM.

Keywords: Sensitivity analysis; Simulation; Likelihood ratio method (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-10193-9_10

Ordering information: This item can be ordered from
http://www.springer.com/9783031101939

DOI: 10.1007/978-3-031-10193-9_10

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-18
Handle: RePEc:spr:sprchp:978-3-031-10193-9_10