Numerical Series and Series of Functions
Alessandro Fonda
Additional contact information
Alessandro Fonda: Università degli Studi di Trieste, Dipartimento di Matematica e Geoscienze
Chapter 8 in A Modern Introduction to Mathematical Analysis, 2023, pp 203-232 from Springer
Abstract:
Abstract Let V be a normed vector space. Given a sequence (a k)k in V , the associated “series” is the sequence (s n)n defined by s 0 = a 0 , s 1 = a 0 + a 1 , s 2 = a 0 + a 1 + a 2 , … s n = a 0 + a 1 + a 2 + ⋯ + a n , … $$\displaystyle \begin {array}{lll} &&s_0=a_0\,,\\ &&s_1=a_0+a_1\,,\\ &&s_2=a_0+a_1+a_2\,,\\ &&\; \dots \\ &&s_n=a_0+a_1+a_2+\dots +a_n\,,\\ &&\; \dots \end {array} $$
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-23713-3_8
Ordering information: This item can be ordered from
http://www.springer.com/9783031237133
DOI: 10.1007/978-3-031-23713-3_8
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().