Special Cases of Axisymmetric and Gaussian Beams
Gérard Gouesbet () and
Gérard Gréhan
Additional contact information
Gérard Gouesbet: CNRS-Université et INSA de Rouen Campus Universitaire du Madrillet, Campus Universitaire du Madrillet
Gérard Gréhan: Université de Rouen CNRS UMR 6614, CORIA
Chapter Chapter 6 in Generalized Lorenz-Mie Theories, 2023, pp 141-170 from Springer
Abstract:
Abstract We define an axisymmetric beam [74] (Gouesbet, Applied Optics 35(9), 1543–1555, 1996) to be a beam for which the z-component $$S_{z}$$ S z of the Poynting vector, in which z is the direction of propagation of the beam, does not depend on the azimuthal angle $$\varphi $$ φ , in suitably chosen coordinate systems.
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-25949-4_6
Ordering information: This item can be ordered from
http://www.springer.com/9783031259494
DOI: 10.1007/978-3-031-25949-4_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().