Hilbert-Samuel Multiplicity and Finite Projections
Ana Bravo () and
Santiago Encinas ()
Additional contact information
Ana Bravo: Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Depto. Matemáticas, Facultad de Ciencias
Santiago Encinas: Instituto de Matemáticas, Universidad de Valladolid, Depto. Álgebra, Análisis Matemático, Geometría y Topología, and IMUVA
Chapter Chapter 11 in Handbook of Geometry and Topology of Singularities IV, 2023, pp 521-557 from Springer
Abstract:
Abstract In this (mainly) expository notes, we study the multiplicity of a local Noetherian ring ( B , 𝔪 ) $$(B,{\mathfrak m})$$ at an 𝔪 $${\mathfrak m}$$ -primary ideal I, paying special attention to the geometrical aspects of this notion. To this end, we will be considering suitably defined finite extensions S ⊂ B $$S\subset B$$ , with S regular. We will explore some applications like the explicit description of the equimultiple locus of an equidimensional variety, or the computation of the asymptotic Samuel function.
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-31925-9_11
Ordering information: This item can be ordered from
http://www.springer.com/9783031319259
DOI: 10.1007/978-3-031-31925-9_11
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().