EconPapers    
Economics at your fingertips  
 

Hilbert-Samuel Multiplicity and Finite Projections

Ana Bravo () and Santiago Encinas ()
Additional contact information
Ana Bravo: Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Depto. Matemáticas, Facultad de Ciencias
Santiago Encinas: Instituto de Matemáticas, Universidad de Valladolid, Depto. Álgebra, Análisis Matemático, Geometría y Topología, and IMUVA

Chapter Chapter 11 in Handbook of Geometry and Topology of Singularities IV, 2023, pp 521-557 from Springer

Abstract: Abstract In this (mainly) expository notes, we study the multiplicity of a local Noetherian ring ( B , 𝔪 ) $$(B,{\mathfrak m})$$ at an 𝔪 $${\mathfrak m}$$ -primary ideal I, paying special attention to the geometrical aspects of this notion. To this end, we will be considering suitably defined finite extensions S ⊂ B $$S\subset B$$ , with S regular. We will explore some applications like the explicit description of the equimultiple locus of an equidimensional variety, or the computation of the asymptotic Samuel function.

Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-31925-9_11

Ordering information: This item can be ordered from
http://www.springer.com/9783031319259

DOI: 10.1007/978-3-031-31925-9_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-031-31925-9_11