EconPapers    
Economics at your fingertips  
 

Invariance Under Postcomposition with a Smooth Morphism

Leonid Positselski
Additional contact information
Leonid Positselski: Czech Academy of Sciences, Institute of Mathematics

Chapter Chapter 10 in Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes, 2023, pp 157-177 from Springer

Abstract: Abstract Let 𝔛 $${\mathfrak X}$$ be an ind-semi-separated ind-Noetherian ind-scheme, and let Ο„ : 𝔛 β€² β†’ 𝔛 $$\tau \colon {\mathfrak X}'\longrightarrow {\mathfrak X}$$ be a smooth affine morphism of finite type. Let Ο€ β€² : π”œ β†’ 𝔛 β€² $$\pi '\colon {\boldsymbol {\mathfrak Y}}\longrightarrow {\mathfrak X}'$$ be a flat affine morphism, and let Ο€ : π”œ β†’ 𝔛 $$\pi \colon {\boldsymbol {\mathfrak Y}}\longrightarrow {\mathfrak X}$$ denote the composition Ο€ = Ο„ Ο€ β€² $$\pi =\tau \pi '$$ . Let D β€’ $${\mathcal D}^{\scriptstyle \bullet }$$ be a dualizing complex on 𝔛 $${\mathfrak X}$$ ; then D β€² β€’ = Ο„ βˆ— D β€’ $${\mathcal D}'{ }^{\scriptstyle \bullet }= \tau ^*{\mathcal D}^{\scriptstyle \bullet }$$ is a dualizing complex on 𝔛 β€² $${\mathfrak X}'$$ . The aim of this chapter is to show that the constructions of Chaps. 7–8, including the semiderived category of quasi-coherent torsion sheaves on π”œ $${\boldsymbol {\mathfrak Y}}$$ and the semitensor product operation on it, are preserved by the passage from the flat affine moprhism Ο€ β€² $$\pi '$$ to the flat affine morphism Ο€ $$\pi $$ .

Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-031-37905-5_10

Ordering information: This item can be ordered from
http://www.springer.com/9783031379055

DOI: 10.1007/978-3-031-37905-5_10

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-3-031-37905-5_10