EconPapers    
Economics at your fingertips  
 

Basic Theory of Multivariate Maxima

Michael Falk (), Jürg Hüsler () and Rolf-Dieter Reiss ()
Additional contact information
Michael Falk: University of Würzburg, Institute of Mathematics
Jürg Hüsler: University of Berne, Department of Mathematical Statistics and Actuarial Science
Rolf-Dieter Reiss: University of Siegen, Department of Mathematics

Chapter Chapter 4 in Laws of Small Numbers: Extremes and Rare Events, 2011, pp 135-169 from Springer

Abstract: Abstract In this chapter, we study the limiting distributions of componentwise defined maxima of iid d-variate rv. Such distributions are again max-stable as in the univariate case. Some technical results and first examples of max-stable df are collected in Section 4.1. In Section 4.2 and 4.3, we describe representations of max-stable df such as the de Haan-Resnick and the Pickands representation. Of special interest for the subsequent chapters will be the Pickands dependence function in Section 4.3 and the D-norm, which will be introduced in Section 4.4.

Keywords: Basic Theory; Borel Subset; Dependence Function; Bivariate Case; Total Dependence (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-0009-9_4

Ordering information: This item can be ordered from
http://www.springer.com/9783034800099

DOI: 10.1007/978-3-0348-0009-9_4

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-3-0348-0009-9_4