Extremes of Random Sequences
Michael Falk (),
Jürg Hüsler () and
Rolf-Dieter Reiss ()
Additional contact information
Michael Falk: University of Würzburg, Institute of Mathematics
Jürg Hüsler: University of Berne, Department of Mathematical Statistics and Actuarial Science
Rolf-Dieter Reiss: University of Siegen, Department of Mathematics
Chapter Chapter 9 in Laws of Small Numbers: Extremes and Rare Events, 2011, pp 357-380 from Springer
Abstract:
Abstract We develop the general theory of extremes and exceedances of high boundaries by non-stationary random sequences. Of main interest is the asymptotic convergence of the point processes of exceedances or of clusters of exceedances. These results are then applied for special cases, as stationary, independent and particular nonstationary random sequences.
Keywords: Poisson Process; Point Process; Random Sequence; Local Dependence; Extremal Index (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-0009-9_9
Ordering information: This item can be ordered from
http://www.springer.com/9783034800099
DOI: 10.1007/978-3-0348-0009-9_9
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().