EconPapers    
Economics at your fingertips  
 

Pre q-Analysis

Thomas Ernst
Additional contact information
Thomas Ernst: Uppsala University, Department of Mathematics

Chapter Chapter 3 in A Comprehensive Treatment of q-Calculus, 2012, pp 63-95 from Springer

Abstract: Abstract We begin with the duality between analytic number theory, combinatorial identities and q-series, to indicate the historical development of the allied disciplines. It is irrelevant what notation we use for the Γ-function, the essential part is that we keep this notation. Section 3.7 is devoted to this important function and the hypergeometric function. We use a vector notation for the Γ-function and introduce the concepts well-poised and balanced series. The binomial coefficients also play an important part since a finite hypergeometric series can always be expressed in two equivalent ways. The three Kummerian summation formulae (and their multiple q-analogues) will follow us in future chapters. We summarise the different schools for Theta functions and show that the elliptic function snu can be written as a balanced quotient of infinite q-shifted factorials. We conclude this chapter with definitions of the most important orthogonal polynomials; we keep Jacobi’s definition for the Jacobi polynomials.

Keywords: Hypergeometric Function; Elliptic Function; Theta Function; Hermite Polynomial; Jacobi Polynomial (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-0431-8_3

Ordering information: This item can be ordered from
http://www.springer.com/9783034804318

DOI: 10.1007/978-3-0348-0431-8_3

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-0348-0431-8_3