EconPapers    
Economics at your fingertips  
 

Quaternions and Spatial Rotation

João Pedro Morais, Svetlin Georgiev and Wolfgang Sprößig
Additional contact information
João Pedro Morais: University of Aveiro, CIDMA
Svetlin Georgiev: University of Sofia St Kliment Ohridski Faculty of Mathematics and Informatics, Department of Differential Equations
Wolfgang Sprößig: TU Bergakademie Freiberg, Institut für Angewandte Analysis

Chapter 2 in Real Quaternionic Calculus Handbook, 2014, pp 35-51 from Springer

Abstract: Abstract The particularly rich theory of rotations does not need advertising. One can think of a rotation as a transformation in the plane or in space that describes the position and orientation of a three-dimensional rigid body around a fixed point. The first ever study of rotations was published by L. Euler in 1776.

Keywords: Rotation Angle; Unit Quaternion; Quaternion Representation; Pure Quaternion; Composite Rotation (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-0622-0_2

Ordering information: This item can be ordered from
http://www.springer.com/9783034806220

DOI: 10.1007/978-3-0348-0622-0_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-0348-0622-0_2