EconPapers    
Economics at your fingertips  
 

On Staudt’s Proposition relating to the Bernoullian Numbers

Ludwig Schläfli

A chapter in Gesammelte Mathematische Abhandlungen, 1953, pp 363-364 from Springer

Abstract: Abstract If n be a positive integer number and the variable x less than 1/n, the rational fraction 1/[(1 - x) (1 – 2 x)... (1 - n x)] can be expanded into the series A − n 0 + A − n 1 x + A − n 2 x 2 + A − n 3 x 3 + ⋅ ⋅ ⋅ $${}^{ - n}{A_0} + {}^{ - n}{A_1}x + {}^{ - n}{A_2}{x^2} + {}^{ - n}{A_3}{x^3} + \cdot \cdot \cdot$$ and it will be readily seen that the general coefficient -n A m is a positive integer number2). From ( d d x − n ) ( e x − 1 ) n n ! = ( e x − 1 ) n − 1 ( n − 1 ) ! $$\left( {\frac{d} {{dx}} - n} \right)\frac{{{{\left( {{e^x} - 1} \right)}^n}}} {{n!}} = \frac{{{{\left( {{e^x} - 1} \right)}^{n - 1}}}} {{\left( {n - 1} \right)!}}$$ we may then infer ( e x − 1 ) n n ! = 1 ( d d x − 1 ) ( d d x − 2 ) ... ( d d x − n ) ⋅ 1 = ∑ λ = 0 λ = ∞ A − n λ ( d d x ) − n − λ ⋅ 1 = ∑ λ = 0 λ = ∞ A − n λ x n + 1 ( n + λ ) ! $$\frac{{{{\left( {{e^x} - 1} \right)}^n}}} {{n!}} = \frac{1} {{\left( {\frac{d} {{dx}} - 1} \right)\left( {\frac{d} {{dx}} - 2} \right)...\left( {\frac{d} {{dx}} - n} \right)}} \cdot 1 = \sum\limits_{\lambda = 0}^{\lambda = \infty } {{}^{ - n}{A_\lambda }{{\left( {\frac{d} {{dx}}} \right)}^{ - n - \lambda }} \cdot 1 = \sum\limits_{\lambda = 0}^{\lambda = \infty } {{}^{ - n}{A_\lambda }\frac{{{x^{n + 1}}}} {{\left( {n + \lambda } \right)!}}} }$$ whence ∑ m = 0 m = n ( − 1 ) n − m m ! ( n − m ) ! e m x = ∑ λ = 0 λ = ∞ A − n λ x n + λ ( n + λ ) ! $$\sum\limits_{m = 0}^{m = n} {\frac{{{{\left( { - 1} \right)}^{n - m}}}} {{m!\left( {n - m} \right)!}}{e^{mx}} = \sum\limits_{\lambda = 0}^{\lambda = \infty } {{}^{ - n}{A_\lambda }\frac{{{x^{n + \lambda }}}} {{\left( {n + \lambda } \right)!}}} }$$ therefore n ! A − n m − n = ∑ λ = 0 λ = m ( − 1 ) n − λ ( n λ ) λ m $$n!{}^{ - n}{A_{m - n}} = \sum\limits_{\lambda = 0}^{\lambda = m} {{{\left( { - 1} \right)}^{n - \lambda }}\left( \begin{gathered} n \hfill \\ \lambda \hfill \\ \end{gathered} \right){\lambda ^m}}$$ which expression is zero for m = 0, 1, 2, 3, ..., n - 1 and n! for m = n, and might also have been obtained by the well known method of decomposition of a rational fraction.

Date: 1953
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-4117-7_15

Ordering information: This item can be ordered from
http://www.springer.com/9783034841177

DOI: 10.1007/978-3-0348-4117-7_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-0348-4117-7_15