EconPapers    
Economics at your fingertips  
 

A new regularity result for Ornstein-Uhlenbeck generators and applications

G. Da Prato ()
Additional contact information
G. Da Prato: Scuola Normale Superiore di Pisa

A chapter in Nonlinear Evolution Equations and Related Topics, 2003, pp 485-498 from Springer

Abstract: Abstract Let H be a separable real Hilbert space (norm $$ \left|\cdot\right|$$ , inner product $$ \left\langle{\cdot,\cdot}\right\rangle$$ ). We are given a linear operator $$A:D\left( A \right) \subset H \to H $$ such that HYPOTHESIS 1.1. (i) A is self-adjoint and there exists ω > 0 such that 1.1 $$ \left\langle {Ax,x} \right\rangle \leqslant - \omega {\left| x \right|^2}, x \in D(A). $$ (ii) A −1 is of trace class.

Keywords: 35K90; 35R15; 46B70; Ornstein-Uhlenbeck generators; maximal regularity (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-7924-8_26

Ordering information: This item can be ordered from
http://www.springer.com/9783034879248

DOI: 10.1007/978-3-0348-7924-8_26

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-0348-7924-8_26