EconPapers    
Economics at your fingertips  
 

Global solution and smoothing effect for a non-local regularization of a hyperbolic equation

J. Droniou (), T. Gallouët () and J. Vovelle ()
Additional contact information
J. Droniou: Université Montpellier II Place Eugène Bataillon, Département de Mathématiques CC 051
T. Gallouët: CMI, Université de Provence
J. Vovelle: CMI, Université de Provence

A chapter in Nonlinear Evolution Equations and Related Topics, 2003, pp 499-521 from Springer

Abstract: Abstract We study the problem 1.1 $$ \left\{ \begin{gathered} {{\partial }_{t}}u\left( {t,x} \right) + {{\partial }_{x}}\left( {f\left( u \right)} \right)\left( {t,x} \right) + g\left[ {u\left( {t,\cdot } \right)} \right]\left( x \right) = 0 t \in ]0,\infty [,x \in \mathbb{R} \hfill \\ u\left( {0,x} \right) = {{u}_{0}}\left( x \right) x \in \mathbb{R}, \hfill \\ \end{gathered} \right. $$ where $$ f \in {C^\infty }\left( \mathbb{R} \right)$$ is such that f (0) = 0(there is not loss of generality in assuming this), $$ {u_0} \in {L^\infty }\left( \mathbb{R} \right)$$ and gis the non-local (in general) operator defined through the Fourier transform by 1.1 $$ \mathcal{F}\left( {g\left[ {u\left( {t, \cdot } \right)} \right]} \right)\left( \xi \right) = {\left| \xi \right|^\lambda }\mathcal{F}\left( {u\left( {t, \cdot } \right)} \right)\left( \xi \right), with \lambda \in \left] {1,2} \right]. $$

Keywords: Maximum Principle; Global Solution; Detonation Wave; Hyperbolic Equation; Spatial Derivative (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-7924-8_27

Ordering information: This item can be ordered from
http://www.springer.com/9783034879248

DOI: 10.1007/978-3-0348-7924-8_27

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-0348-7924-8_27