Global solution and smoothing effect for a non-local regularization of a hyperbolic equation
J. Droniou (),
T. Gallouët () and
J. Vovelle ()
Additional contact information
J. Droniou: Université Montpellier II Place Eugène Bataillon, Département de Mathématiques CC 051
T. Gallouët: CMI, Université de Provence
J. Vovelle: CMI, Université de Provence
A chapter in Nonlinear Evolution Equations and Related Topics, 2003, pp 499-521 from Springer
Abstract:
Abstract We study the problem 1.1 $$ \left\{ \begin{gathered} {{\partial }_{t}}u\left( {t,x} \right) + {{\partial }_{x}}\left( {f\left( u \right)} \right)\left( {t,x} \right) + g\left[ {u\left( {t,\cdot } \right)} \right]\left( x \right) = 0 t \in ]0,\infty [,x \in \mathbb{R} \hfill \\ u\left( {0,x} \right) = {{u}_{0}}\left( x \right) x \in \mathbb{R}, \hfill \\ \end{gathered} \right. $$ where $$ f \in {C^\infty }\left( \mathbb{R} \right)$$ is such that f (0) = 0(there is not loss of generality in assuming this), $$ {u_0} \in {L^\infty }\left( \mathbb{R} \right)$$ and gis the non-local (in general) operator defined through the Fourier transform by 1.1 $$ \mathcal{F}\left( {g\left[ {u\left( {t, \cdot } \right)} \right]} \right)\left( \xi \right) = {\left| \xi \right|^\lambda }\mathcal{F}\left( {u\left( {t, \cdot } \right)} \right)\left( \xi \right), with \lambda \in \left] {1,2} \right]. $$
Keywords: Maximum Principle; Global Solution; Detonation Wave; Hyperbolic Equation; Spatial Derivative (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-7924-8_27
Ordering information: This item can be ordered from
http://www.springer.com/9783034879248
DOI: 10.1007/978-3-0348-7924-8_27
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().