Decay estimates for “anisotropic” viscous Hamilton-Jacobi equations in ℝ N
Saïd Benachour () and
Philippe Laurençot ()
Additional contact information
Saïd Benachour: Université de Nancy 1, Institut Elie Cartan — Nancy
Philippe Laurençot: Université Paul Sabatier—Toulouse 3 118 route de Narbonne, Mathématiques pour l’Industrie et la Physique CNRS UMR 5640
A chapter in Nonlinear Evolution Equations and Related Topics, 2003, pp 27-37 from Springer
Abstract:
Abstract The large time behaviour of the L q -norm of nonnegative solutions to the “anisotropic” viscous Hamilton-Jacobi equation $$ {u_{t}} - \Delta u + {\sum\limits_{{i = 1}}^{m} {|{u_{{xi}}}|} ^{{Pi}}} = 0 in {\mathbb{R}_{ + }} x {\mathbb{R}^{N}}, $$ is studied for q = 1 and q = ∞, where m ∈ {1,...,N} and p i for i ∈ {1,...,m}. The limit of theL 1-norm is identified, and temporal decay estimates for the L ∞-norm are obtained, according to the values of the p i ’s. The main tool in our approach is the derivation of L∞-decay estimates for $$ \nabla ({u^{\alpha }}),\alpha \in (0,1] $$ , by a Bernstein technique inspired by the ones developed by Bénilan for the porous medium equation.
Keywords: 35B40; 35B45; 35K55; Viscous Hamilton-Jacobi equation; temporal decay estimates; gradient estimates (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-7924-8_3
Ordering information: This item can be ordered from
http://www.springer.com/9783034879248
DOI: 10.1007/978-3-0348-7924-8_3
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().