EconPapers    
Economics at your fingertips  
 

Compact Families of Rational Functions

M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J. P. Schreiber
Additional contact information
M. J. Bertin: Université Pierre et Marie Curie Mathématiques
A. Decomps-Guilloux: Université Pierre et Marie Curie Mathématiques
M. Grandet-Hugot: Université de Caen Mathématiques
M. Pathiaux-Delefosse: Université Pierre et Marie Curie Mathématiques
J. P. Schreiber: Université d’Orléans, Château de la Source

Chapter Chapter 2 in Pisot and Salem Numbers, 1992, pp 19-25 from Springer

Abstract: Abstract The main aim of this book is to determine closed families of algebraic numbers. We can for instance associate to an algebraic number θ the rational function $$z \in C \to {{P(z)} \over {P*(z)}}$$ , P being the minimal polynomial of θ and P* the reciprocal polynomial of P. We therefore need to study families of rational functions with coefficients in Z.

Date: 1992
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-8632-1_2

Ordering information: This item can be ordered from
http://www.springer.com/9783034886321

DOI: 10.1007/978-3-0348-8632-1_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-19
Handle: RePEc:spr:sprchp:978-3-0348-8632-1_2