EconPapers    
Economics at your fingertips  
 

Small Pisot Numbers

M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J. P. Schreiber
Additional contact information
M. J. Bertin: Université Pierre et Marie Curie Mathématiques
A. Decomps-Guilloux: Université Pierre et Marie Curie Mathématiques
M. Grandet-Hugot: Université de Caen Mathématiques
M. Pathiaux-Delefosse: Université Pierre et Marie Curie Mathématiques
J. P. Schreiber: Université d’Orléans, Château de la Source

Chapter Chapter 7 in Pisot and Salem Numbers, 1992, pp 119-151 from Springer

Abstract: Abstract Using Schur’s algorithm for generating all Pisot numbers less than or equal to $${{\hat \theta }_{15}} \simeq 1.6183608 \ldots $$ , we prove that Inf S = θ 0, where ϑ 0 = 1.3247179572... satisfies the equation X 3 − X − 1 = 0, and that $$Inf S' = (\sqrt 5 + 1)/2$$ .

Keywords: Rational Function; Unit Circle; Finite Rank; Algebraic Integer; Rational Integer (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-8632-1_7

Ordering information: This item can be ordered from
http://www.springer.com/9783034886321

DOI: 10.1007/978-3-0348-8632-1_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-0348-8632-1_7