Small Pisot Numbers
M. J. Bertin,
A. Decomps-Guilloux,
M. Grandet-Hugot,
M. Pathiaux-Delefosse and
J. P. Schreiber
Additional contact information
M. J. Bertin: Université Pierre et Marie Curie Mathématiques
A. Decomps-Guilloux: Université Pierre et Marie Curie Mathématiques
M. Grandet-Hugot: Université de Caen Mathématiques
M. Pathiaux-Delefosse: Université Pierre et Marie Curie Mathématiques
J. P. Schreiber: Université d’Orléans, Château de la Source
Chapter Chapter 7 in Pisot and Salem Numbers, 1992, pp 119-151 from Springer
Abstract:
Abstract Using Schur’s algorithm for generating all Pisot numbers less than or equal to $${{\hat \theta }_{15}} \simeq 1.6183608 \ldots $$ , we prove that Inf S = θ 0, where ϑ 0 = 1.3247179572... satisfies the equation X 3 − X − 1 = 0, and that $$Inf S' = (\sqrt 5 + 1)/2$$ .
Keywords: Rational Function; Unit Circle; Finite Rank; Algebraic Integer; Rational Integer (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-8632-1_7
Ordering information: This item can be ordered from
http://www.springer.com/9783034886321
DOI: 10.1007/978-3-0348-8632-1_7
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().