Some Properties and Applications of Pisot Numbers
M. J. Bertin,
A. Decomps-Guilloux,
M. Grandet-Hugot,
M. Pathiaux-Delefosse and
J. P. Schreiber
Additional contact information
M. J. Bertin: Université Pierre et Marie Curie Mathématiques
A. Decomps-Guilloux: Université Pierre et Marie Curie Mathématiques
M. Grandet-Hugot: Université de Caen Mathématiques
M. Pathiaux-Delefosse: Université Pierre et Marie Curie Mathématiques
J. P. Schreiber: Université d’Orléans, Château de la Source
Chapter Chapter 8 in Pisot and Salem Numbers, 1992, pp 153-168 from Springer
Abstract:
Abstract This chapter describes some lesser-known properties of Pisot numbers; Salem numbers appear only in Theorem 8.1.1. By this choice we have sought to demonstrate Pisot numbers’ important role in many questions (applications to harmonic analysis will be given in Chapter 15). Notation is the same as in Chapter 5 (cf. §5.0).
Date: 1992
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-8632-1_8
Ordering information: This item can be ordered from
http://www.springer.com/9783034886321
DOI: 10.1007/978-3-0348-8632-1_8
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().