EconPapers    
Economics at your fingertips  
 

Formal Proofs and Decidibility

David Booth and Renatus Ziegler
Additional contact information
David Booth: Three Fold Foundation 307
Renatus Ziegler: Mathematisch-Astronomische Sektion am Geotheanum

A chapter in Finsler Set Theory: Platonism and Circularity, 1996, pp 50-55 from Springer

Abstract: Abstract In order to demonstrate the consistency of certain axiom systems, Hilbert makes use of a theory of mathematical proof in which the proof must be thought of as rigorously formalized in concrete symbols (see Hilbert [1922], [1923], [1926], Bernays [1922], Ackermann [1924]). “A proof is an array which must be graphically represented in its entirety” (Hilbert [1923, 152]). He adds: “A formula shall be said to be provable if it is either an axiom, or arises by substitution into an axiom, or is the concluding formula of a proof” (ibid., 152–153). The aim, then, is to show that, in a given axiom system, a contradictory formula (formalized in the same way) can with certainty never be proven. Axiom systems for which this can be demonstrated are said to be “consistent” (ibid., 157 and [1926, 179]). In the following where the formalization is quite general, such systems will be called formally consistent.

Date: 1996
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-0348-9031-1_4

Ordering information: This item can be ordered from
http://www.springer.com/9783034890311

DOI: 10.1007/978-3-0348-9031-1_4

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-0348-9031-1_4