Vortex Motion for the Landau-Lifshitz-Gilbert Equation with Applied Magnetic Field
Matthias Kurzke (),
Christof Melcher () and
Roger Moser ()
Additional contact information
Matthias Kurzke: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Angewandte Mathematik
Christof Melcher: RWTH Aachen University, Department of Mathematics I & JARA – Fundamentals of Future Information Technology
Roger Moser: University of Bath, Department of Mathematical Sciences
A chapter in Singular Phenomena and Scaling in Mathematical Models, 2014, pp 113-132 from Springer
Abstract:
Abstract In micromagnetics, the fundamental evolution law for the magnetization m in a solid is given by the Landau-Lifshitz-Gilbert equation 1 $$\displaystyle{ \frac{\partial \mathbf{m}} {\partial t} = \mathbf{m} \times \left (\alpha \frac{\partial \mathbf{m}} {\partial t} -\gamma \,\boldsymbol{ h}_{\mathrm{eff}}\right ), }$$ which is used to describe the dynamics of a great variety of magnetic microstructures, in particularly the motion of domain walls and vortices in thin films, see e.g. [3]. Here $$\boldsymbol{h}_{\mathrm{eff}}$$ is the effective field, essentially the L 2 gradient of the micromagnetic energy.
Keywords: Effective Field; Unique Minimizer; Vortex Trajectory; Magnetic Microstructure; Standard Volume Form (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-00786-1_6
Ordering information: This item can be ordered from
http://www.springer.com/9783319007861
DOI: 10.1007/978-3-319-00786-1_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().