Industrial Turbulence Simulations at Large Scale
Daniel F. Harlacher (),
Sabine Roller (),
Florian Hindenlang (),
Claus-Dieter Munz (),
Tim Kraus (),
Martin Fischer (),
Koen Geurts (),
Matthias Meinke (),
Tobias Klühspies (),
Yevgeniya Kovalenko () and
Uwe Küster ()
Additional contact information
Daniel F. Harlacher: Universität Siegen, Simulationstechnik und Wissenschaftliches Rechnen
Sabine Roller: Universität Siegen, Simulationstechnik und Wissenschaftliches Rechnen
Florian Hindenlang: Universität Stuttgart, Institut für Aerodynamik und Gasdynamik
Claus-Dieter Munz: Universität Stuttgart, Institut für Aerodynamik und Gasdynamik
Tim Kraus: Robert Bosch GmbH
Martin Fischer: Robert Bosch GmbH
Koen Geurts: RWTH Aachen University, Chair of Fluid Mechanics and Institute of Aerodynamics
Matthias Meinke: RWTH Aachen University, Chair of Fluid Mechanics and Institute of Aerodynamics
Tobias Klühspies: Trumpf Werkzeugmaschinen GmbH + Co. KG
Yevgeniya Kovalenko: Höchstleistungsrechenzentrum Stuttgart (HLRS)
Uwe Küster: Höchstleistungsrechenzentrum Stuttgart (HLRS)
A chapter in High Performance Computing in Science and Engineering ‘13, 2013, pp 295-319 from Springer
Abstract:
Abstract The most important aspect for simulations in industrial design processes is the time to solution. To obtain highly detailed results nevertheless, massive computational resources have to be deployed. Feasibility and applicability of HPC systems to this purpose is the main focus of this paper. Two different numerical approaches, implemented with parallelism in mind, are investigated with respect to quality as well as turn around times on large super computing systems. The one approach compares the efficiency of high order schemes on coarser meshes to lower order schemes on finer meshes. The second approach employs a zonal coupling of LES and RANS to limit the computational effort by using solution adapted models. Three industrial use-cases evaluate the performance and quality of these approaches. General optimizations are presented as well as solutions for load-balancing.
Keywords: Nozzle Exit; Sound Pressure Level; Discontinuous Galerkin; Discontinuous Galerkin Scheme; Airfoil Aerodynamic (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-02165-2_21
Ordering information: This item can be ordered from
http://www.springer.com/9783319021652
DOI: 10.1007/978-3-319-02165-2_21
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().