EconPapers    
Economics at your fingertips  
 

Radial Solutions for a Dirichlet Problem in a Ball

D. G. Costa () and D. G. De Figueiredo
Additional contact information
D. G. Costa: Universidade de Brasilia, Departamento de Matematica
D. G. De Figueiredo: Universidade de Brasilia, Departamento de Matematica

A chapter in Djairo G. de Figueiredo - Selected Papers, 1985, pp 189-198 from Springer

Abstract: Abstract The Ambrosetti-Prodi boundary value problem with an asymptotically linear nonlinearity is considered. Under general conditions on the nonlinearity it is shown that there exist positive and negative solutions. In the case when the domain is a ball in Rn and the nonlinearity “crosses” the first n eigenvalues, corresponding to radial eigenfunctions, it is proved that there are at least n + 1 radial solution.

Date: 1985
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-02856-9_14

Ordering information: This item can be ordered from
http://www.springer.com/9783319028569

DOI: 10.1007/978-3-319-02856-9_14

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-319-02856-9_14