The Action of a Linear Map on the Grassmann Manifold
Ćemal B. Dolićanin () and
Anatolij B. Antonevich ()
Additional contact information
Ćemal B. Dolićanin: State University of Novi Pazar
Anatolij B. Antonevich: Belarusian State University
Chapter Chapter 7 in Dynamical Systems Generated by Linear Maps, 2014, pp 81-88 from Springer
Abstract:
Abstract The set of subspaces of a given vector space forms the Grassmann manifold, a linear non-singular operator $$A$$ A induces a homeomorphism $$\varphi _A$$ φ A of the Grassmann manifold. Let us find the explicit form or this map.
Keywords: Transition Function; Invariant Subspace; Complex Manifold; Smooth Manifold; Riemann Sphere (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-08228-8_7
Ordering information: This item can be ordered from
http://www.springer.com/9783319082288
DOI: 10.1007/978-3-319-08228-8_7
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().