EconPapers    
Economics at your fingertips  
 

Low-Rank Tensor Methods for Model Order Reduction

Anthony Nouy ()
Additional contact information
Anthony Nouy: GeM, Ecole Centrale Nantes, Department of Computer Science and Mathematics

Chapter 25 in Handbook of Uncertainty Quantification, 2017, pp 857-882 from Springer

Abstract: Abstract Parameter-dependent models arise in many contexts such as uncertainty quantification, sensitivity analysis, inverse problems, or optimization. Parametric or uncertainty analyses usually require the evaluation of an output of a model for many instances of the input parameters, which may be intractable for complex numerical models. A possible remedy consists in replacing the model by an approximate model with reduced complexity (a so-called reduced order model) allowing a fast evaluation of output variables of interest. This chapter provides an overview of low-rank methods for the approximation of functions that are identified either with order-two tensors (for vector-valued functions) or higher-order tensors (for multivariate functions). Different approaches are presented for the computation of low-rank approximations, either based on samples of the function or on the equations that are satisfied by the function, the latter approaches including projection-based model order reduction methods. For multivariate functions, different notions of ranks and the corresponding low-rank approximation formats are introduced.

Keywords: High-dimensional problems; Low-rank approximation; Model order reduction; Parameter-dependent equations; Stochastic equations; Uncertainty quantification (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-12385-1_21

Ordering information: This item can be ordered from
http://www.springer.com/9783319123851

DOI: 10.1007/978-3-319-12385-1_21

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-319-12385-1_21