EconPapers    
Economics at your fingertips  
 

Asymptotic Normality of Binned Kernel Density Estimators for Non-stationary Dependent Random Variables

Michel Harel (), Jean-François Lenain () and Joseph Ngatchou-Wandji ()
Additional contact information
Michel Harel: ÉSPÉ de Limoges
Jean-François Lenain: Faculté des Sciences et Techniques
Joseph Ngatchou-Wandji: Université de Lorraine, EHESP de Rennes, Institut Élie Cartan de Lorraine

A chapter in Mathematical Statistics and Limit Theorems, 2015, pp 167-187 from Springer

Abstract: Abstract We establish the asymptotic normality of binned kernel density estimators for a sequence of dependent and nonstationary random variables converging to a sequence of stationary random variables. We compute the asymptotic variance of a suitably normalized binned kernel density estimator and study its absolute third-order moment. Then, we show that its characteristic function tends to that of a zero-mean Gaussian random variable (rv). We illustrate our results with a simulation experiment.

Keywords: Mean Square Error; Central Limit Theorem; Asymptotic Normality; Confidence Band; Stationary Time Series (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-12442-1_10

Ordering information: This item can be ordered from
http://www.springer.com/9783319124421

DOI: 10.1007/978-3-319-12442-1_10

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-319-12442-1_10