Equations with Three Space Variables in Spherical Coordinates
Yuriy Povstenko
Additional contact information
Yuriy Povstenko: Jan Długosz University in Częstochowa
Chapter Chapter 12 in Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, 2015, pp 415-431 from Springer
Abstract:
Abstract Consider the time-fractional diffusion-wave equation with a source term in spherical coordinates r,θand φ: $$\frac{\partial^\alpha T}{\partial t^\alpha}\;=\;a\Bigg[\frac{\partial^2 T}{\partial r^2}\;+\frac{2}{r}\;\frac{\partial T}{\partial r}\;+\frac{1}{r^2 \mathrm{sin}\;\theta}\;\frac{\partial}{\partial\theta}\Bigg(\mathrm{sin}\;\theta\frac{\partial T}{\partial\theta}\Bigg)\;+\;\frac{1}{r^2\mathrm{sin}^2\theta}\frac{\partial^2 T}{\partial \varphi^2}\Bigg]+\;\Phi(r,\theta,\varphi,t),\qquad \qquad 0\leq r\leq\infty, 0\leq \theta\leq \pi, 0\leq\varphi\leq 2\pi.$$
Date: 2015
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-17954-4_12
Ordering information: This item can be ordered from
http://www.springer.com/9783319179544
DOI: 10.1007/978-3-319-17954-4_12
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().