CM-Points on Straight Lines
Bill Allombert (),
Yuri Bilu () and
Amalia Pizarro-Madariaga ()
Additional contact information
Bill Allombert: Université de Bordeaux, IMB
Yuri Bilu: Université de Bordeaux & CNRS, Institut de Mathématiques de Bordeaux
Amalia Pizarro-Madariaga: Universidad de Valparaíso, Instituto de Matemáticas
A chapter in Analytic Number Theory, 2015, pp 1-18 from Springer
Abstract:
Abstract We prove that, with “obvious” exceptions, a CM-point ( j ( τ 1 ) , j ( τ 2 ) ) $$(j(\tau _{1}),j(\tau _{2}))$$ cannot belong to a straight line in ℂ 2 $$\mathbb{C}^{2}$$ defined over ℚ $$\mathbb{Q}$$ . This generalizes a result of Kühne, who proved this for the line x 1 + x 2 = 1 $$x_{1} + x_{2} = 1$$ .
Keywords: Ring Class Field; Imaginary Quadratic; Hilbert Class Polynomial; Recall Basic Facts; Special Subvarieties (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-22240-0_1
Ordering information: This item can be ordered from
http://www.springer.com/9783319222400
DOI: 10.1007/978-3-319-22240-0_1
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().