EconPapers    
Economics at your fingertips  
 

CM-Points on Straight Lines

Bill Allombert (), Yuri Bilu () and Amalia Pizarro-Madariaga ()
Additional contact information
Bill Allombert: Université de Bordeaux, IMB
Yuri Bilu: Université de Bordeaux & CNRS, Institut de Mathématiques de Bordeaux
Amalia Pizarro-Madariaga: Universidad de Valparaíso, Instituto de Matemáticas

A chapter in Analytic Number Theory, 2015, pp 1-18 from Springer

Abstract: Abstract We prove that, with “obvious” exceptions, a CM-point ( j ( τ 1 ) , j ( τ 2 ) ) $$(j(\tau _{1}),j(\tau _{2}))$$ cannot belong to a straight line in ℂ 2 $$\mathbb{C}^{2}$$ defined over ℚ $$\mathbb{Q}$$ . This generalizes a result of Kühne, who proved this for the line x 1 + x 2 = 1 $$x_{1} + x_{2} = 1$$ .

Keywords: Ring Class Field; Imaginary Quadratic; Hilbert Class Polynomial; Recall Basic Facts; Special Subvarieties (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-22240-0_1

Ordering information: This item can be ordered from
http://www.springer.com/9783319222400

DOI: 10.1007/978-3-319-22240-0_1

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-18
Handle: RePEc:spr:sprchp:978-3-319-22240-0_1