Wiener–Kolmogorov Filtering and Smoothing
Víctor Gómez
Additional contact information
Víctor Gómez: Ministerio de Hacienda y Administraciones Públicas Dirección Gral. de Presupuestos, Subdirección Gral. de Análisis y P.E.
Chapter Chapter 7 in Multivariate Time Series With Linear State Space Structure, 2016, pp 449-519 from Springer
Abstract:
Abstract This chapter is dedicated to Wiener–Kolmogorov filtering and smoothing. First, the classical Wiener–Kolmogorov formulae are obtained. Then, assuming the data have state space structure, some specialized results for filtering and smoothing are given. The equivalence between Wiener–Kolmogorov and Kalman filtering is established. The last part of the chapter deals with Wiener–Kolmogorov filtering and smoothing in finite samples.
Keywords: Kalman Filter; State Space Model; Finite Sample; Covariance Factorization; Cholesky Decomposition (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-28599-3_7
Ordering information: This item can be ordered from
http://www.springer.com/9783319285993
DOI: 10.1007/978-3-319-28599-3_7
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().