EconPapers    
Economics at your fingertips  
 

A Model for Coupled Outbreaks Contained by Behavior Change

John M. Drake () and Andrew W. Park
Additional contact information
John M. Drake: University of Georgia, Odum School of Ecology
Andrew W. Park: University of Georgia, Odum School of Ecology

A chapter in Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, 2016, pp 25-37 from Springer

Abstract: Abstract Large epidemics such as the recent Ebola crisis in West Africa occur when local efforts to contain outbreaks fail to overcome the probabilistic onward transmission to new locations. As a result, there may be large differences in total epidemic size from similar initial conditions. This work seeks to determine the extent to which the effects of behavior changes and metapopulation coupling on epidemic size can be characterized. While mathematical models have been developed to study local containment by social distancing, intervention and other behavior changes, their connection to larger-scale transmission is relatively underdeveloped. We make use of the assumption that behavior changesBehavior changes limit local transmission before susceptible depletion to develop a time-varying birth-death processBirth-death process capturing the dynamic decrease of the transmission rateTransmission rate associated with behavior changes. We derive an expression for the mean outbreak size of this model and show that the distribution of outbreak sizes is approximately geometric. This allows a probabilistic extension whereby infected individuals may initiate new outbreaks. From this model we characterize the overall epidemic size as a function of the behavior change rate and the probability that an infected individual starts a new outbreak. We find good agreement between the analytical results and stochastic simulations leading to novel findings including critical learning rates that demarcate large and small epidemic sizes.

Keywords: Ebola; Epidemic model; Behavior change; Transmission rate; Birth-death process; Metapopulation model (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-40413-4_3

Ordering information: This item can be ordered from
http://www.springer.com/9783319404134

DOI: 10.1007/978-3-319-40413-4_3

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-319-40413-4_3