Multiple Integration on Time Scales
Martin Bohner and
Svetlin G. Georgiev ()
Additional contact information
Martin Bohner: Missouri University of Science and Technology, Department of Mathematics and Statistics
Svetlin G. Georgiev: Sofia University St. Kliment Ohridski, Faculty of Mathematics and Informatics
Chapter Chapter 7 in Multivariable Dynamic Calculus on Time Scales, 2016, pp 449-515 from Springer
Abstract:
Abstract Let $${\mathbb {T}}_i$$ T i , $$i\in \{1,2,\ldots ,n\}$$ i ∈ { 1 , 2 , … , n } , be time scales. For $$i\in \{1,2,\ldots ,n\}$$ i ∈ { 1 , 2 , … , n } , let $$\sigma _i$$ σ i , $$\rho _i$$ ρ i , and $$\varDelta _i$$ Δ i denote the forward jump operator, the backward jump operator, and the delta differentiation, respectively, on $${\mathbb {T}}_i$$ T i .
Date: 2016
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-47620-9_7
Ordering information: This item can be ordered from
http://www.springer.com/9783319476209
DOI: 10.1007/978-3-319-47620-9_7
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().