EconPapers    
Economics at your fingertips  
 

Multiple Integration on Time Scales

Martin Bohner and Svetlin G. Georgiev ()
Additional contact information
Martin Bohner: Missouri University of Science and Technology, Department of Mathematics and Statistics
Svetlin G. Georgiev: Sofia University St. Kliment Ohridski, Faculty of Mathematics and Informatics

Chapter Chapter 7 in Multivariable Dynamic Calculus on Time Scales, 2016, pp 449-515 from Springer

Abstract: Abstract Let $${\mathbb {T}}_i$$ T i , $$i\in \{1,2,\ldots ,n\}$$ i ∈ { 1 , 2 , … , n } , be time scales. For $$i\in \{1,2,\ldots ,n\}$$ i ∈ { 1 , 2 , … , n } , let $$\sigma _i$$ σ i , $$\rho _i$$ ρ i , and $$\varDelta _i$$ Δ i denote the forward jump operator, the backward jump operator, and the delta differentiation, respectively, on $${\mathbb {T}}_i$$ T i .

Date: 2016
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-47620-9_7

Ordering information: This item can be ordered from
http://www.springer.com/9783319476209

DOI: 10.1007/978-3-319-47620-9_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-3-319-47620-9_7