Level 10: Ramanujan’s Function k
Shaun Cooper
Additional contact information
Shaun Cooper: Massey University, Institute of Natural and Mathematical Science
Chapter Chapter 10 in Ramanujan's Theta Functions, 2017, pp 523-551 from Springer
Abstract:
Abstract We conduct a detailed analysis of Ramanujan’s function k = k(q) defined by k = q ∏ j = 1 ∞ ( 1 − q 10 j − 9 ) ( 1 − q 10 j − 8 ) ( 1 − q 10 j − 2 ) ( 1 − q 10 j − 1 ) ( 1 − q 10 j − 7 ) ( 1 − q 10 j − 6 ) ( 1 − q 10 j − 4 ) ( 1 − q 10 j − 3 ) $$k = q\prod _{j=1}^{\infty }\frac{(1 - q^{10j-9})(1 - q^{10j-8})(1 - q^{10j-2})(1 - q^{10j-1})} {(1 - q^{10j-7})(1 - q^{10j-6})(1 - q^{10j-4})(1 - q^{10j-3})}$$ and obtain results that are analogues of theorems in Chapters 5–9
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-56172-1_11
Ordering information: This item can be ordered from
http://www.springer.com/9783319561721
DOI: 10.1007/978-3-319-56172-1_11
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().