EconPapers    
Economics at your fingertips  
 

A Phenomenological Spatial Model for Macro-Ecological Patterns in Species-Rich Ecosystems

Fabio Peruzzo () and Sandro Azaele
Additional contact information
Fabio Peruzzo: School of Mathematics, University of Leeds, Department of Applied Mathematics
Sandro Azaele: School of Mathematics, University of Leeds, Department of Applied Mathematics

A chapter in Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology, 2017, pp 349-368 from Springer

Abstract: Abstract Over the last few decades, ecologists have come to appreciate that key ecological patterns, which describe ecological communities at relatively large spatial scales, are not only scale dependent, but also intimately intertwined. The relative abundance of species—which informs us about the commonness and rarity of species—changes its shape from small to large spatial scales. The average number of species as a function of area has a steep initial increase, followed by decreasing slopes at large scales. Finally, if we find a species in a given location, it is more likely we find an individual of the same species close-by, rather than farther apart. Such spatial turnover depends on the geographical distribution of species, which often are spatially aggregated. This reverberates on the abundances as well as the richness of species within a region, but so far it has been difficult to quantify such relationships. Within a neutral framework—which considers all individuals competitively equivalent—we introduce a spatial stochastic model, which phenomenologically accounts for birth, death, immigration and local dispersal of individuals. We calculate the pair correlation function—which encapsulates spatial turnover—and the conditional probability to find a species with a certain population within a given circular area. Also, we calculate the macro-ecological patterns, which we have referred to above, and compare the analytical formulæ with the numerical integration of the model. Finally, we contrast the model predictions with the empirical data for two lowland tropical forest inventories, showing always a good agreement.

Date: 2017
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-62627-7_15

Ordering information: This item can be ordered from
http://www.springer.com/9783319626277

DOI: 10.1007/978-3-319-62627-7_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-319-62627-7_15