Inductive and Recursive Freeness of Localizations of Multiarrangements
Torsten Hoge (),
Gerhard Röhrle () and
Anne Schauenburg ()
Additional contact information
Torsten Hoge: Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik
Gerhard Röhrle: Ruhr-Universität Bochum, Fakultät für Mathematik
Anne Schauenburg: Ruhr-Universität Bochum, Fakultät für Mathematik
A chapter in Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 2017, pp 403-421 from Springer
Abstract:
Abstract The class of free multiarrangements is known to be closed under taking localizations. We extend this result to the stronger notions of inductive and recursive freeness. As an application, we prove that recursively free (multi)arrangements are compatible with the product construction for (multi)arrangements. In addition, we show how our results can be used to derive that some canonical classes of free multiarrangements are not inductively free.
Keywords: Multiarrangement; Free arrangement; Inductively free arrangement; Recursively free arrangement; Localization of an arrangement; Primary 52C35, 14N20; Secondary 51D20 (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-70566-8_16
Ordering information: This item can be ordered from
http://www.springer.com/9783319705668
DOI: 10.1007/978-3-319-70566-8_16
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().