Enhanced Floating-Point Sums, Dot Products, and Polynomial Values
Jean-Michel Muller,
Nicolas Brunie,
Florent de Dinechin,
Claude-Pierre Jeannerod,
Mioara Joldes,
Vincent Lefèvre,
Guillaume Melquiond,
Nathalie Revol and
Serge Torres
Additional contact information
Jean-Michel Muller: CNRS - LIP
Nicolas Brunie: Kalray
Florent de Dinechin: INSA-Lyon - CITI
Claude-Pierre Jeannerod: Inria - LIP
Mioara Joldes: CNRS - LAAS
Vincent Lefèvre: Inria - LIP
Guillaume Melquiond: Inria - LRI
Nathalie Revol: Inria - LIP
Serge Torres: ENS-Lyon - LIP
Chapter Chapter 5 in Handbook of Floating-Point Arithmetic, 2018, pp 163-192 from Springer
Abstract:
Abstract In this chapter, we focus on the computation of sums and dot products, and on the evaluation of polynomials in IEEE 754 floating-point arithmetic. Such calculations arise in many fields of numerical computing. Computing sums is required, e.g., in numerical integration and the computation of means and variances. Dot products appear everywhere in numerical linear algebra. Polynomials are used to approximate many functions (see Chapter 10 ).
Date: 2018
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-76526-6_5
Ordering information: This item can be ordered from
http://www.springer.com/9783319765266
DOI: 10.1007/978-3-319-76526-6_5
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().