EconPapers    
Economics at your fingertips  
 

Enhanced Floating-Point Sums, Dot Products, and Polynomial Values

Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol and Serge Torres
Additional contact information
Jean-Michel Muller: CNRS - LIP
Nicolas Brunie: Kalray
Florent de Dinechin: INSA-Lyon - CITI
Claude-Pierre Jeannerod: Inria - LIP
Mioara Joldes: CNRS - LAAS
Vincent Lefèvre: Inria - LIP
Guillaume Melquiond: Inria - LRI
Nathalie Revol: Inria - LIP
Serge Torres: ENS-Lyon - LIP

Chapter Chapter 5 in Handbook of Floating-Point Arithmetic, 2018, pp 163-192 from Springer

Abstract: Abstract In this chapter, we focus on the computation of sums and dot products, and on the evaluation of polynomials in IEEE 754 floating-point arithmetic. Such calculations arise in many fields of numerical computing. Computing sums is required, e.g., in numerical integration and the computation of means and variances. Dot products appear everywhere in numerical linear algebra. Polynomials are used to approximate many functions (see Chapter 10 ).

Date: 2018
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-76526-6_5

Ordering information: This item can be ordered from
http://www.springer.com/9783319765266

DOI: 10.1007/978-3-319-76526-6_5

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-10
Handle: RePEc:spr:sprchp:978-3-319-76526-6_5