EconPapers    
Economics at your fingertips  
 

Platonic Surfaces

Brenda Leticia De La Rosa-Navarro (), Gioia Failla (), Juan Bosco Frías-Medina, Mustapha Lahyane () and Rosanna Utano ()
Additional contact information
Brenda Leticia De La Rosa-Navarro: Universidad Autónoma de Baja California, Facultad de Ciencias
Gioia Failla: Università Mediterranea di Reggio Calabria
Juan Bosco Frías-Medina: Universidad Nacional Autónoma de México. Área de la Investigación Científica. Circuito Exterior, Ciudad Universitaria, Instituto de Matemáticas
Mustapha Lahyane: Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Instituto de Física y Matemáticas (IFM)
Rosanna Utano: Università di Messina, Dipartimento di Scienze Matematiche e Informatiche. Scienze Fisiche e Scienze della Terra

A chapter in Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 2018, pp 319-342 from Springer

Abstract: Abstract We define the notion of Platonic surfaces. These are anticanonical smooth projective rational surfaces defined over any fixed algebraically closed field of arbitrary characteristic and having the projective plane as a minimal model with very nice geometric properties. We prove that their Cox rings are finitely generated. In particular, they are extremal and their effective monoids are finitely generated. Thus, these Platonic surfaces are built from points of the projective plane which are in good position. It is worth noting that not only their Picard number may be big but also an anticanonical divisor may have a very large number of irreducible components.

Date: 2018
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-96827-8_12

Ordering information: This item can be ordered from
http://www.springer.com/9783319968278

DOI: 10.1007/978-3-319-96827-8_12

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-319-96827-8_12