EconPapers    
Economics at your fingertips  
 

Coverings of Rational Ruled Normal Surfaces

Enrique Artal Bartolo (), José Ignacio Cogolludo-Agustín () and Jorge Martín-Morales ()
Additional contact information
Enrique Artal Bartolo: Universidad de Zaragoza, Departamento de Matemáticas, IUMA
José Ignacio Cogolludo-Agustín: Universidad de Zaragoza, Departamento de Matemáticas, IUMA
Jorge Martín-Morales: Academia General Militar, Centro Universitario de la Defensa-IUMA

A chapter in Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 2018, pp 343-373 from Springer

Abstract: Abstract In this work we use arithmetic, geometric, and combinatorial techniques to compute the cohomology of Weil divisors of a special class of normal surfaces, the so-called rational ruled toric surfaces. These computations are used to study the topology of cyclic coverings of such surfaces ramified along ℚ $$\mathbb {Q}$$ -normal crossing divisors.

Date: 2018
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-96827-8_13

Ordering information: This item can be ordered from
http://www.springer.com/9783319968278

DOI: 10.1007/978-3-319-96827-8_13

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-319-96827-8_13