EconPapers    
Economics at your fingertips  
 

Topological Vector Spaces

Taqdir Husain
Additional contact information
Taqdir Husain: McMaster University

Chapter 2 in The Open Mapping and Closed Graph Theorems in Topological Vector Spaces, 1965, pp 11-33 from Springer

Abstract: Abstract Definition 1. (a) A set E u is said to be a topological vector space (or, in short, a TVS) over a given field K, if E u as a pointset is a topological space and a vector space over K such that the mappings: % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaGGOa % GaamiEaiaacYcacaWG5bGaaiykaiabgkziUkaadIhacqGHRaWkcaWG % 5bGaaiilaaqaaiaacIcacqaH7oaBcaGGSaGaamiEaiaacMcacqGHsg % IRcqaH7oaBcaWG4baaaaa!48D1! $$\begin{gathered} (x,y) \to x + y, \hfill \\ (\lambda ,x) \to \lambda x \hfill \\ \end{gathered}$$ are continuous in both variables together for x, y ∈ E and λ ∈ K.

Keywords: Convex Hull; Topological Vector Space; Finite Subset; Inductive Limit; Fundamental System (search for similar items in EconPapers)
Date: 1965
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-322-96210-2_2

Ordering information: This item can be ordered from
http://www.springer.com/9783322962102

DOI: 10.1007/978-3-322-96210-2_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-09
Handle: RePEc:spr:sprchp:978-3-322-96210-2_2