Vector Autoregressive Moving Average Processes
Helmut Lütkepohl
Chapter 11 in New Introduction to Multiple Time Series Analysis, 2005, pp 419-446 from Springer
Abstract:
Abstract In this chapter, we extend our standard finite order VAR model, % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa % aaleaacaWG0baabeaakiabg2da9iabe27aUjabgUcaRiaadgeadaWg % aaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaadshacqGHsislca % aIXaaabeaakiabgUcaRiablAciljabgUcaRiaadgeadaWgaaWcbaGa % amiCaaqabaGccaWG5bWaaSbaaSqaaiaadshacqGHsislcaWGWbaabe % aakiabgUcaRiabew7aLnaaBaaaleaacaWG0baabeaakiaacYcaaaa!4E94! $$y_t = \nu + A_1 y_{t - 1} + \ldots + A_p y_{t - p} + \varepsilon _t , $$ by allowing the error terms, here εt, to be autocorrelated rather than white noise. The autocorrelation structure is assumed to be of a relatively simple type so that εt has a finite order moving average (MA) representation, % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS % baaSqaaiaadshaaeqaaOGaeyypa0JaamyDamaaBaaaleaacaWG0baa % beaakiabgUcaRiaad2eadaWgaaWcbaGaaGymaaqabaGccaWG1bWaaS % baaSqaaiaadshacqGHsislcaaIXaaabeaakiabgUcaRiablAciljab % gUcaRiaad2eadaWgaaWcbaGaamyCaaqabaGccaWG1bWaaSbaaSqaai % aadshacqGHsislcaWGXbaabeaakiaacYcaaaa!4C08! $$\varepsilon _t = u_t + M_1 u_{t - 1} + \ldots + M_q u_{t - q} ,$$ where, as usual, u t is zero mean white noise with nonsingular covariance matrix Σu. A finite order VAR process with finite order MA error term is called a VARMA (vector autoregressive moving average) process.
Keywords: Forecast Error; Move Average; Vector Autoregressive; White Noise Process; Optimal Forecast (search for similar items in EconPapers)
Date: 2005
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-540-27752-1_11
Ordering information: This item can be ordered from
http://www.springer.com/9783540277521
DOI: 10.1007/978-3-540-27752-1_11
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().