EconPapers    
Economics at your fingertips  
 

VAR Order Selection and Checking the Model Adequacy

Helmut Lütkepohl

Chapter 4 in New Introduction to Multiple Time Series Analysis, 2005, pp 135-192 from Springer

Abstract: Abstract In the previous chapter, we have assumed that we have given a K-dimensional multiple time series % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa % aaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyEamaaBaaa % leaacaWGubaabeaakiaacYcacaaMe8Uaam4DaiaadMgacaWG0bGaam % iAaiaaysW7caWG5bWaaSbaaSqaaiaadshaaeqaaOGaeyypa0ZaaeWa % aeaacaWG5bWaaSbaaSqaaiaaigdacaWG0baabeaakiaacYcacqWIMa % YscaGGSaGaamyEamaaBaaaleaacaWGlbGaamiDaaqabaaakiaawIca % caGLPaaadaahaaWcbeqaaOGamai4gkdiIcaacaGGSaaaaa!54F7! $$y_1 , \ldots ,y_T ,\;with\;y_t = \left( {y_{1t} , \ldots ,y_{Kt} } \right)^\prime , $$ which is known to be generated by a VAR(p) process, 4.1.1 % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa % aaleaacaWG0baabeaakiabg2da9iaadAhacqGHRaWkcaWGbbWaaSba % aSqaaiaaigdacaWG5bGaamiDaiabgkHiTiaaigdaaeqaaOGaey4kaS % IaeSOjGSKaey4kaSIaamyqamaaBaaaleaacaWGWbaabeaakiaadMha % daWgaaWcbaGaamiDaiabgkHiTiaadchaaeqaaOGaey4kaSIaamyDam % aaBaaaleaacaWG0baabeaakiaacYcaaaa!4CF4! $$ y_t = v + A_{1yt - 1} + \ldots + A_p y_{t - p} + u_t , $$ and we have discussed estimation of the parameters % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maai % ilaiaadgeadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiil % aiaadgeadaWgaaWcbaGaamiCaaqabaGccaGGSaGaaGjbVlaadggaca % WGUbGaamizaiaaysW7cqGHris5daWgaaWcbaGaamyDaaqabaGccqGH % 9aqpcaWGfbWaaeWaaeaacaWG1bWaaSbaaSqaaiaadshaaeqaaOGabm % yDayaafaWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaGaaiOl % aaaa!5048! $$ \nu ,A_1 , \ldots ,A_p ,\;and\;\sum _u = E\left( {u_t u'_t } \right). $$ In deriving the properties of the estimators, a number of assumptions were made. In practice, it will rarely be known with certainty whether the conditions hold that are required to derive the consistency and asymptotic normality of the estimators. Therefore statistical tools should be used in order to check the validity of the assumptions made. In this chapter, some such tools will be discussed.

Keywords: Forecast Error; Asymptotic Distribution; Data Generation Process; White Noise Process; Multiple Time Series (search for similar items in EconPapers)
Date: 2005
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-540-27752-1_4

Ordering information: This item can be ordered from
http://www.springer.com/9783540277521

DOI: 10.1007/978-3-540-27752-1_4

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-23
Handle: RePEc:spr:sprchp:978-3-540-27752-1_4