EconPapers    
Economics at your fingertips  
 

Optimisation in an Error Backpropagation Neural Network Environment with a Performance Test on a Spectral Pattern Classification Problem

P. Staufer

Chapter 10 in Spatial Analysis and GeoComputation, 2006, pp 183-207 from Springer

Abstract: Abstract This paper attempts to develop a mathematically rigid framework for minimising the cross-entropy function in an error backpropagating framework. In doing so, we derive the backpropagation formulae for evaluating the partial derivatives in a computationally efficient way. Various techniques of optimising the multiple-class cross-entropy error function to train single hidden layer neural network classifiers with softmax output transfer functions are investigated on a real world multispectral pixel-by-pixel classification problem that is of fundamental importance in remote sensing. These techniques include epoch-based and batch versions of backpropagation of gradient descent, PR-conjugate gradient, and BFGS quasi-Newton errors. The method of choice depends upon the nature of the learning task and whether one wants to optimise learning for speed or classification performance. It was found that, comparatively considered, gradient descent error backpropagation provided the best and most stable out-of-sample performance results across batch and epoch-based modes of operation. If the goal is to maximise learning speed and a sacrifice in classification accuracy is acceptable, then PR-conjugate gradient error backpropagation tends to be superior. If the training set is very large, stochastic epoch-based versions of local optimisers should be chosen utilising a larger rather than a smaller epoch size to avoid unacceptable instabilities in the classification results.

Keywords: Remote Sensing; Classification Accuracy; Conjugate Gradient; Gradient Descent; Hide Unit (search for similar items in EconPapers)
Date: 2006
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-540-35730-8_10

Ordering information: This item can be ordered from
http://www.springer.com/9783540357308

DOI: 10.1007/3-540-35730-0_10

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:spr:sprchp:978-3-540-35730-8_10