A Methodology for Neural Spatial Interaction Modelling
M. Reismann
Chapter 14 in Spatial Analysis and GeoComputation, 2006, pp 283-309 from Springer
Abstract:
Abstract This paper attempts to develop a mathematically rigid and unified framework for neural spatial interaction modelling. Families of classical neural network models, but also less classical ones such as product unit neural network ones are considered for the cases of unconstrained and singly constrained spatial interaction flows. Current practice appears to suffer from least squares and normality assumptions that ignore the true integer nature of the flows and approximate a discrete-valued process by an almost certainly misrepresentative continuous distribution. To overcome this deficiency we suggest a more suitable estimation approach, maximum likelihood estimation under more realistic distributional assumptions of Poisson processes, and utilise a global search procedure, called Alopex, to solve the maximum likelihood estimation problem. To identify the transition from underfitting to overfitting we split the data into training, internal validation and test sets. The bootstrapping pairs approach with replacement is adopted to combine the purity of data splitting with the power of a resampling procedure to overcome the generally neglected issue of fixed data splitting and the problem of scarce data. In addition, the approach has power to provide a better statistical picture of the prediction variability. Finally, a benchmark comparison against the classical gravity models illustrates the superiority of both, the unconstrained and the origin-constrained neural network model versions in terms of generalisation performance measured by Kullback and Leibler’s information criterion.
Keywords: Neural Network Model; Gravity Model; Product Unit; Spatial Interaction; Hide Unit (search for similar items in EconPapers)
Date: 2006
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-540-35730-8_14
Ordering information: This item can be ordered from
http://www.springer.com/9783540357308
DOI: 10.1007/3-540-35730-0_14
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().