T Directions of a Meromorphic Function
Jianhua Zheng ()
Additional contact information
Jianhua Zheng: Tsinghua University, Department of Mathematical Sciences
Chapter Chapter 3 in Value Distribution of Meromorphic Functions, 2010, pp 123-183 from Springer
Abstract:
Abstract A transcendental meromorphic function has a singular property in any neighborhood of its essential singular point, for example, it assumes there infinitely often all but at most two values on the extended complex plane. This property is preserved in any angular domain containing some fixed ray. Such ray is termed as the singular direction of the function considered. In this chapter, we mainly discuss T directions of meromorphic functions, which was introduced by the author in 2003. First of all we consider the existence of T directions including T directions with small functions as targets. Next we consider connections among T directions and other directions such as Julia directions and Borel directions and mainly introduce a result of Zhang Q. D. which proves that a T (resp. Borel) direction may not be a Borel (resp. T) direction. We list conditions for the existence of singular directions dealing with derivatives of the functions, that is, the Hayman T directions and for the existence of common T directions of a function and its derivatives. We present a simple discussion of distribution of the Julia, Borel and T directions. In terms of their asymptotic form, through the Stokes rays we investigate singular directions of meromorphic solutions of a linear differential equation with rational coefficients. In the case of at least one of the coefficients being transcendental, we use the Nevanlinna’s fundamental theorems for an angle to attain the aim of our researches. We conclude this chapter with a simple survey on value distribution of algebroid functions including the Nevanlinna first and second fundamental theorems for a disk and unique theorems and the singular directions.
Keywords: T Directions; Hayman T directions; Singular directions; Meromorphic solution; Algebroid functions (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-12909-4_3
Ordering information: This item can be ordered from
http://www.springer.com/9783642129094
DOI: 10.1007/978-3-642-12909-4_3
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().