EconPapers    
Economics at your fingertips  
 

Arnold Diffusion by Variational Methods

John N. Mather ()
Additional contact information
John N. Mather: Princeton University

A chapter in Essays in Mathematics and its Applications, 2012, pp 271-285 from Springer

Abstract: Abstract In this paper, we correct results announced in Mather (J Math Sci NY 124:5275–5289, 2003) and make some observations on the proofs of these results. The principal result, Theorem 1, is a strong form of Arnold diffusion in two and one half degrees of freedom, under suitable genericity hypotheses. After (Mather, J Math Sci NY 124:5275–5289, 2003) appeared, we realized that there is an oversight in our planned proof. Because of the oversight, the genericity conditions that we imposed on U in Mather (J Math Sci NY 124:5275–5289, 2003) are not enough. In this paper, we state further genericity conditions, which are enough for our revised proof. In addition, we note that a slightly stronger differentiability hypothesis than we stated in Mather (J Math Sci NY 124:5275–5289, 2003) is needed. In the later sections of this paper, we make some observations related to the proof of Theorem 1. The complete (revised) proof will appear elsewhere.

Keywords: Quadratic Form; Global Minimum; Rotation Vector; Small Denominator; Positive Definite Quadratic Form (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-28821-0_11

Ordering information: This item can be ordered from
http://www.springer.com/9783642288210

DOI: 10.1007/978-3-642-28821-0_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-642-28821-0_11