EconPapers    
Economics at your fingertips  
 

Principal Component Analysis

Wolfgang Karl Härdle and Zdeněk Hlávka
Additional contact information
Wolfgang Karl Härdle: Humboldt-Universität zu Berlin, C.A.S.E. Centre f. Appl. Stat. & Econ. School of Business and Economics
Zdeněk Hlávka: Charles University in Prague, Faculty of Mathematics and Physics Department of Statistics

Chapter Chapter 11 in Multivariate Statistics, 2015, pp 183-203 from Springer

Abstract: Abstract This chapter addresses the issue of reducing the dimensionality of a multivariate random variable by using linear combinations (the principal components). The identified principal components are ordered in decreasing order of importance. When applied in practice to a data matrix, the principal components will turn out to be the factors of a transformed data matrix (the data will be centered and eventually standardized).

Keywords: Random Vector; Original Variable; Spectral Decomposition; Variance Matrix; Auto Theft (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-36005-3_11

Ordering information: This item can be ordered from
http://www.springer.com/9783642360053

DOI: 10.1007/978-3-642-36005-3_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-29
Handle: RePEc:spr:sprchp:978-3-642-36005-3_11