Cluster Analysis
Wolfgang Karl Härdle and
Zdeněk Hlávka
Additional contact information
Wolfgang Karl Härdle: Humboldt-Universität zu Berlin, C.A.S.E. Centre f. Appl. Stat. & Econ. School of Business and Economics
Zdeněk Hlávka: Charles University in Prague, Faculty of Mathematics and Physics Department of Statistics
Chapter Chapter 13 in Multivariate Statistics, 2015, pp 225-244 from Springer
Abstract:
Abstract When considering groups of objects in a multivariate data set, two situations can arise. Given a data set containing measurements on individuals, in some cases we want to see if some natural groups or classes of individuals exist, and in other cases, we want to classify the individuals according to a set of existing groups. Cluster analysis develops tools and methods concerning the former case, that is, given a data matrix containing multivariate measurements on a large number of individuals (or objects), the objective is to build subgroups or clusters of individuals. This is done by grouping individuals that are “similar” according to some appropriate criterion.
Keywords: Single Linkage; Complete Linkage; Outlying Observation; Ward Method; Auto Theft (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-36005-3_13
Ordering information: This item can be ordered from
http://www.springer.com/9783642360053
DOI: 10.1007/978-3-642-36005-3_13
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().