EconPapers    
Economics at your fingertips  
 

Theory of the Multinormal

Wolfgang Karl Härdle and Zdeněk Hlávka
Additional contact information
Wolfgang Karl Härdle: Humboldt-Universität zu Berlin, C.A.S.E. Centre f. Appl. Stat. & Econ. School of Business and Economics
Zdeněk Hlávka: Charles University in Prague, Faculty of Mathematics and Physics Department of Statistics

Chapter Chapter 5 in Multivariate Statistics, 2015, pp 71-88 from Springer

Abstract: Abstract In the preceding chapter we realized the importance of the multivariate normal distribution, its geometry and connection with elliptic dependence structures. The multivariate normal comes into play in many applications and statistical tests. It is therefore important to know how this distribution behaves when we apply conditioning or linear or nonlinear transformation. Multivariate normal distribution

Keywords: Covariance Matrix; Linear Transformation; Random Vector; Joint Distribution; Conditional Distribution (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-36005-3_5

Ordering information: This item can be ordered from
http://www.springer.com/9783642360053

DOI: 10.1007/978-3-642-36005-3_5

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-18
Handle: RePEc:spr:sprchp:978-3-642-36005-3_5