EconPapers    
Economics at your fingertips  
 

Singular Minimal Surfaces

Ulrich Dierkes ()
Additional contact information
Ulrich Dierkes: Universität Duisburg, Institut für Mathematik

A chapter in Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp 177-193 from Springer

Abstract: Abstract In this survey I would like to report on some recent results concerning the singular minimal surface equation * $$ div\left( {\frac{{Du}}{{\sqrt {{1 + {{\left| {Du} \right|}^{2}}}} }}} \right)\, = \frac{\alpha }{{u\sqrt {{1 + {{\left| {Du} \right|}^{2}}}} }} $$ for functions u : Ω → ℝ, Ω ⊂ ℝ n a domain, or Ω = ℝ n . Here α denotes some real number.

Keywords: Minimal Surface; Entire Solution; Minimal Hypersurface; Minimal Submanifold; Minimal Cone (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-55627-2_11

Ordering information: This item can be ordered from
http://www.springer.com/9783642556272

DOI: 10.1007/978-3-642-55627-2_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-3-642-55627-2_11